Differentiable and Scalable Generative Adversarial Models for Data Imputation
نویسندگان
چکیده
Data imputation has been extensively explored to solve the missing data problem. The dramatically increasing volume of incomplete makes models computationally infeasible in many real-life applications. In this paper, we propose an effective scalable system named SCIS significantly speed up training differentiable generative adversarial under accuracy-guarantees for large-scale data. consists two modules, differentiable modeling (DIM) and xmlns:xlink="http://www.w3.org/1999/xlink">sample size estimation (SSE). DIM leverages a new xmlns:xlink="http://www.w3.org/1999/xlink">masking Sinkhorn divergence function make arbitrary model differentiable, while such model, SSE can estimate appropriate sample ensure user-specified accuracy final model. Moreover, also accelerate autoencoder based models. Extensive experiments upon several datasets demonstrate that, our proposed by 6.23x. Using around 1.27% samples, yields competitive with state-of-the-art methods much shorter computation time.
منابع مشابه
Adversarial examples for generative models
We explore methods of producing adversarial examples on deep generative models such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning architectures are known to be vulnerable to adversarial examples, but previous work has focused on the application of adversarial examples to classification tasks. Deep generative models have recently become popular due to their ability to model...
متن کاملData Augmentation Generative Adversarial Networks
Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation (Krizhevsky et al., 2012) alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of...
متن کاملAsymptotically exact inference in differentiable generative models
Many generative models can be expressed as a differentiable function of random inputs drawn from some simple probability density. This framework includes both deep generative architectures such as Variational Autoencoders and a large class of procedurally defined simulator models. We present a method for performing efficient MCMC inference in such models when conditioning on observations of the...
متن کاملLearning Universal Adversarial Perturbations with Generative Models
Neural networks are known to be vulnerable to adversarial examples, inputs that have been intentionally perturbed to remain visually similar to the source input, but cause a misclassification. It was recently shown that given a dataset and classifier, there exists so called universal adversarial perturbations, a single perturbation that causes a misclassification when applied to any input. In t...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2023
ISSN: ['1558-2191', '1041-4347', '2326-3865']
DOI: https://doi.org/10.1109/tkde.2023.3293129